ENS - Ecole Normale Supérieure
Back to top

Publications

Acte de conférence expertisé  

Mamassian, P. & Vemuri, B. (1993). ISOPHOTES ON A SMOOTH SURFACE RELATED TO SCENE GEOMETRY. , Vol. 2031: In Geometric Methods in Computer Vision II, 124-133. doi:10.1117/12.146619

Chapitre d'ouvrage  

Mamassian, P., Landy, M., Maloney, L., Rao, R., Olshausen, B. & Lewicki, M. (2002). Bayesian modelling of visual perception. In R. Rao, B. Olshausen & M. Lewicki (Eds.), Probabilistic Models of the Brain: Perception and Neural Function (pp. 13-36). Cambridge, MA: MIT Press

Acte de conférence expertisé  

Caze, R., Humphries, M. & Gutkin, B. (2012). Spiking and saturating dendrites differentially expand single neuron computation capacity. , Vol. 13: In Twenty First Annual Computational Neuroscience Meeting: CNS*2012, Decatur, GA, USA.

Chapitre d'ouvrage  

Graupner, M. & Gutkin, B. (2012). Dynamical Approaches to understanding cholinergic control of nicotine action pathways in the dopaminergic reward circuits. Computational Neuroscience of Drug Addiction (Springer ed.).Ahmed and Gutkin (eds.)

Chapitre d'ouvrage  

Remme, M., Lengyel, M. & Gutkin, B. (2014). Phase Response Methods in Dendritic Dynamics. In Schultheiss et al (eds) (Eds.), Phase Response Cruves in NeuroscienceSpringer

Chapitre d'ouvrage  

Kuznetsov, A. & Gutkin, B. (2015). Dopaminergic cell Models. The Encyclopedia of Computational Neuroscience (pp. 2958-2965).

Chapitre d'ouvrage  

Gutkin, B. (2015). Theta-neurons. In Springer Verlag (Eds.), Encyclopedia of Comptutational Neuroscience (pp. 1034-1042).

Chapitre d'ouvrage  

Remme, M., Lengyel, M. & Gutkin, B. (2015). Trade-off between dendritic democracy and independence in neurons with intrinsic subthreshold membrane potential oscillatio. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer

Acte de conférence expertisé  

Ponsot, E., Déjardin, H. & Roncière, E. (2016). Controlling Programme Loudness in Individualized Binaural Rendering of Multi-Channel Audio Contents. , Vol. 140: In Audio Engineering Society .

Acte de conférence expertisé  

Aucouturier, J., Liuni, M. & Ponsot, E. (2017). Not so scary anymore : Screaming voices embedded in harmonic contexts are more positive and less arousing. In ESCOM.

Autres  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2017). A bright future for financial agent-based models. arXiv preprint arXiv:1801.08222

Chapitre d'ouvrage  

Dumont, G., Maex, R. & Gutkin, B. (2018). Dopaminergic Neurons in the Ventral Tegmental Area and Their Dysregulation in Nicotine Addiction. In Alan Anticevic and John D. Murray (Eds.), Computational Psychiatry: Mathematical Modeling of Mental Illness (pp. 47-84). doi:10.1016/B978-0-12-809825-7.00003-1

Autres  
Autres  

Lazarevich, I. , Gutkin, B. & Prokin, I. (2018). Neural activity classification with machine learning models trained on interspike interval series data. arxiv , 1810.03855

Autres  

Martinez-Saito, M. , Konovalov, R. , Piradov, M. , Shestakova, A. , Gutkin, B. & Klucharev, V. (2018). Action in auctions: neural and computational mechanisms of bidding behavior. BioRxiv, 464925. doi:10.1101/464925

Autres  

Vacher, J. , Mamassian, P. & Coen-Cagli, R. (2018). An Ideal Observer Model to Probe Human Visual Segmentation of Natural Images. arXiv

Autres  

Neri, P. (2018). Classification images as descriptive statistics. "Journal of Mathematical Psychology", "82"("1), "26–37"

Acte de conférence expertisé  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2020). Learning and Cognition in Financial Markets: A Paradigm Shift for Agent-Based Models. In Arai K., Kapoor S., Bhatia R. (Eds.), Vol. 1252: In IntelliSys 2020. Advances in Intelligent Systems and Computing, 241-255. doi:10.1007/978-3-030-55190-2_19