ENS - Ecole Normale Supérieure
Back to top

Publications

Acte de conférence non expertisé  

Caucheteux, C. , Gramfort, A. & King, J. (2021). Disentangling syntax and semantics in the brain with deep networks. , Vol. 139: In International Conference on Machine Learning, PMLR, 1336-1348.

Acte de conférence non expertisé  

Caze, R., Humphries, M., Gutkin, B. & Schultz, S. (2013). A difficult classification for neurons without dendrites. In Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on, San Diego, CA, USA, IEEE, 215-218. doi:10.1109/NER.2013.6695910

Acte de conférence non expertisé  

Dubreuil, A., Valente, A., Mastrogiuseppe, F. & Ostojic, S. (2019). Disentangling the roles of dimensionality and cell classes in neural computation. In NeurIPS Workshop.

Chapitre d'ouvrage  

Dumont, G., Maex, R. & Gutkin, B. (2018). Dopaminergic Neurons in the Ventral Tegmental Area and Their Dysregulation in Nicotine Addiction. In Alan Anticevic and John D. Murray (Eds.), Computational Psychiatry: Mathematical Modeling of Mental Illness (pp. 47-84). doi:10.1016/B978-0-12-809825-7.00003-1

Acte de conférence non expertisé  

Erdmann, A. , Joseph Wrisley, D., Allen, B. , Brown, C. , Cohen-Bodenes, S., Elsner, M. , Feng, Y. , D Joseph, B. , Joyeux-Prunel, B. & de Marneffe, M. (2019). Practical, Efficient, and Customizable Active Learning for Named Entity Recognition in the Digital Humanities. In Proceedings of the 2019 Conference of the North, 2223-2234. doi:10.18653/v1/N19-1231

Chapitre d'ouvrage  

Graupner, M. & Gutkin, B. (2012). Dynamical Approaches to understanding cholinergic control of nicotine action pathways in the dopaminergic reward circuits. Computational Neuroscience of Drug Addiction (Springer ed.).Ahmed and Gutkin (eds.)

Chapitre d'ouvrage  

Gutkin, B. (2015). Theta-neurons. In Springer Verlag (Eds.), Encyclopedia of Comptutational Neuroscience (pp. 1034-1042).

Chapitre d'ouvrage  

Kuznetsov, A. & Gutkin, B. (2015). Dopaminergic cell Models. The Encyclopedia of Computational Neuroscience (pp. 2958-2965).

Chapitre d'ouvrage  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2020). Learning and Cognition in Financial Markets: A Paradigm Shift for Agent-Based Models. Advances in Intelligent Systems and Computing (Vol. 1252, pp. 241-255). doi:10.1007/978-3-030-55190-2_19

Chapitre d'ouvrage  

Mamassian, P., Landy, M., Maloney, L., Rao, R., Olshausen, B. & Lewicki, M. (2002). Bayesian modelling of visual perception. In R. Rao, B. Olshausen & M. Lewicki (Eds.), Probabilistic Models of the Brain: Perception and Neural Function (pp. 13-36). Cambridge, MA: MIT Press

Acte de conférence non expertisé  
Chapitre d'ouvrage  

Pressnitzer, D., Agus, T., Kang, H. , Graves, J. & Andrillon, T. (2021). Apprentissage de motifs sonores. In S. Samson, B. Tillmann, C. Jourdan, V. Brun (Eds.), Audition et Cognition Montpellier: Sauramps Medical

Chapitre d'ouvrage  

Remme, M., Lengyel, M. & Gutkin, B. (2015). Trade-off between dendritic democracy and independence in neurons with intrinsic subthreshold membrane potential oscillatio. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer

Chapitre d'ouvrage  

Remme, M., Lengyel, M. & Gutkin, B. (2014). Phase Response Methods in Dendritic Dynamics. In Schultheiss et al (eds) (Eds.), Phase Response Cruves in NeuroscienceSpringer

Chapitre d'ouvrage  

Shamma, S. (2020). Temporal Coherence Principle in Scene Analysis. The Senses: A Comprehensive Reference (Second Edition) (Vol. 2, pp. 777-790).Elsevier. doi:10.1016/B978-0-12-809324-5.24252-1

Acte de conférence non expertisé  

Thoret, E., Andrillon, T., Gauriau, C., Léger, D. & Pressnitzer, D. (2020). Sleep deprivation impacts speech spectro-temporal modulations. In e-FA2020 (e- Forum Acusticum 2020 ), Lyon, France.

Acte de conférence non expertisé  

Zakharov, D., Dogonasheva, O. & Gutkin, B. (2020). Role of Pyramidal Cell M-current in Weak Pyramidal/Interneuronal Gamma Cluster Formation. In 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), Innopolis, Russia, IEEE. doi:10.1109/DCNAIR50402.2020.9216942

Acte de conférence non expertisé  

Zuk, N. , Di Liberto, G. & Lalor, E. (2019). Linear-nonlinear Bernoulli modeling for quantifying temporal coding of phonemes in brain responses to continuous speech. In 2019 Conference on Cognitive Computational Neuroscience, Berlin, Germany.