ENS - Ecole Normale Supérieure
Back to top

Publications

Other  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2017). A bright future for financial agent-based models. arXiv preprint arXiv:1801.08222

Other  
Other  

Martinez-Saito, M. , Konovalov, R. , Piradov, M. , Shestakova, A. , Gutkin, B. & Klucharev, V. (2018). Action in auctions: neural and computational mechanisms of bidding behavior. BioRxiv, 464925. doi:10.1101/464925

Other  

Lazarevich, I. , Gutkin, B. & Prokin, I. (2018). Neural activity classification with machine learning models trained on interspike interval series data. arxiv , 1810.03855

Book chapter  

Ramus, F., Peperkamp, S., Christophe, A., Jacquemot, C., Kouider, S. & Dupoux, E. (2010). A Psycholinguistic Perspective on the Acquisition of Phonology. In C. Fougeron (Eds.), Laboratory Phonology (Vol. 10 ).De Gruyter Mouton

Book chapter  

Ramus, F. & Szenkovits, G. (2011). Understanding the nature of the phonological deficit. (pp. 153-169). doi:10.4324/9780203838006

Book chapter  

Graupner, M. & Gutkin, B. (2012). Dynamical Approaches to understanding cholinergic control of nicotine action pathways in the dopaminergic reward circuits. Computational Neuroscience of Drug Addiction (Springer ed.).Ahmed and Gutkin (eds.)

Book chapter  

Ramus, F. (2013). A neurological model of dyslexia and other domain-specific developmental disorders with an associated sensorimotor syndrome. (pp. 75-102). doi:10.4324/9780203774915

Book chapter  

Caze, R., Humphries, M. & Gutkin, B. (2013). Dendrites enhance both single neuron and network computation. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer

Book chapter  

Remme, M., Lengyel, M. & Gutkin, B. (2014). Phase Response Methods in Dendritic Dynamics. In Schultheiss et al (eds) (Eds.), Phase Response Cruves in NeuroscienceSpringer

Book chapter  

Remme, M., Lengyel, M. & Gutkin, B. (2015). Trade-off between dendritic democracy and independence in neurons with intrinsic subthreshold membrane potential oscillatio. In Remme et al (eds) (Eds.), Dendritic ComputationSpringer

Book chapter  

Kuznetsov, A. & Gutkin, B. (2015). Dopaminergic cell Models. The Encyclopedia of Computational Neuroscience (pp. 2958-2965).

Book chapter  

Gutkin, B. (2015). Theta-neurons. In Springer Verlag (Eds.), Encyclopedia of Comptutational Neuroscience (pp. 1034-1042).

Book chapter  

Dumont, G., Maex, R. & Gutkin, B. (2018). Dopaminergic Neurons in the Ventral Tegmental Area and Their Dysregulation in Nicotine Addiction. In Alan Anticevic and John D. Murray (Eds.), Computational Psychiatry: Mathematical Modeling of Mental Illness (pp. 47-84). doi:10.1016/B978-0-12-809825-7.00003-1

Book chapter  

Lussange, J., Belianin, A., Bourgeois-Gironde, S. & Gutkin, B. (2021). Learning and Cognition in Financial Markets: A Paradigm Shift for Agent-Based Models. Advances in Intelligent Systems and Computing (Vol. 1252, pp. 241-255). doi:10.1007/978-3-030-55190-2_19

Monograph  

Gutkin, B. & Ahmed, S. (2012). Computational Neuroscience of Drug Addiction.

Non-reviewed conference proceeding  

Caze, R., Humphries, M., Gutkin, B. & Schultz, S. (2013). A difficult classification for neurons without dendrites. In Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on, San Diego, CA, USA, IEEE, 215-218. doi:10.1109/NER.2013.6695910

Non-reviewed conference proceeding  

Zakharov, D., Dogonasheva, O. & Gutkin, B. (2020). Role of Pyramidal Cell M-current in Weak Pyramidal/Interneuronal Gamma Cluster Formation. In 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), Innopolis, Russia, IEEE. doi:10.1109/DCNAIR50402.2020.9216942

Non-reviewed conference proceeding  

Zakharov, D., Dogonasheva, O. & Gutkin, B. (2021). Bistability of globally synchronous and chimera states in a ring of phase oscillators coupled by a cosine kernel. In 2021 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA), 211-214. doi:10.1109/DCNA53427.2021.9586968

Non-reviewed conference proceeding  

Dogonasheva, O., Gutkin, B. & Zakharov, D. (2021). Calculation of travelling chimera speeds for dynamical systems with ring topologies. In 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA), 61-64. doi:10.1109/DCNA53427.2021.9586903

Non-reviewed conference proceeding  

Radushev, D. , Dogonasheva, O., Gutkin, B. & Zakharov, D. (2023). Chimera states in a ring of non-locally connected interneurons. In 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA), Kaliningrad, Russian Federation, 229-232. doi:10.1109/DCNA59899.2023.10290318

Reviewed conference proceeding  

Caze, R., Humphries, M. & Gutkin, B. (2012). Spiking and saturating dendrites differentially expand single neuron computation capacity. , Vol. 13: In Twenty First Annual Computational Neuroscience Meeting: CNS*2012, Decatur, GA, USA.

Reviewed conference proceeding  

Kandemir, E. , Vie, J., Sanchez-Ayte, A., Palombi, O. & Ramus, F. (2024). Adaptation of the Multi-Concept Multivariate Elo Rating System to Medical Students Training Data. In Proceedings of the 14th Learning Analytics and Knowledge Conference, Kyoto, 123–133. doi:10.1145/3636555.3636858

National journal article  

Ramus, F. (2005). Aux origines cognitives, neurobiologiques et génétiques de la dyslexie. ANAE - Approche Neuropsychologique des Apprentissages chez l'Enfant, 17, 247-253

National journal article  

Ramus, F. (2008). Génétique de la dyslexie développementale. ANAE - Approche Neuropsychologique des Apprentissages chez l'Enfant, 20, 9-14

National journal article  

Ramus, F. (2011). Quel pouvoir prédictif de la génétique et des neurosciences, et quels problmes? Medecine et Droit, 2011(106), 51-58. doi:10.1016/j.meddro.2010.10.010

National journal article  

Ramus, F. (2012). Les troubles spécifiques de la lecture. Information Grammaticale, 133, 34-40